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Dynamic equivalence between soft- and hard-core Brownian fluids

F. de J. Guevara-Rodrı´guez* and Magdaleno Medina-Noyola†

Instituto Mexicano del Petro´leo, Programa de Ingenierı´a Molecular, Eje Central La´zaro Cárdenas 152, 07730 Me´xico,
Distrito Federal, Mexico

~Received 18 December 2002; published 21 July 2003!

In this work, we demonstrate the dynamic equivalence between the members of the family of Brownian
fluids whose particles interact through strongly repulsive radially symmetric soft-core potentials. We specifi-
cally consider pair potentials proportional to inverse powers of (r /s). This equivalence is the dynamic exten-
sion of the static equivalence between all these pair potentials and the hard-sphere fluid, assumed in the
treatment of soft-core reference potentials in the classical~Weeks-Chandler-Andersen or Barker-Henderson!
perturbation theories of simple liquids. In contrast with the strict hard-sphere Brownian system, in the case of
soft-sphere potentials the conventional Brownian dynamics algorithm is indeed well defined. We find that,
except for small values ofn, and/or very short times, the dynamic properties of all these systems collapse into
a single universal curve, upon a well-defined rescaling of the time and distance variables. This family of
systems includes the hard-sphere limit. This observation permits a conceptually simple, new, and accurate
Brownian dynamics algorithm to simulate the dynamic properties of the hard-sphere model dispersion without
hydrodynamic interactions. Such an algorithm consists of the straightforward rescaling of the Brownian-
dynamics simulated properties of any of the dynamically equivalent soft-sphere systems.

DOI: 10.1103/PhysRevE.68.011405 PACS number~s!: 82.70.2y, 05.40.2a, 61.20.2p, 02.70.2c
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I. INTRODUCTION

The hard-sphere~HS! fluid has played an outstanding ro
in the development of our fundamental understanding
simple liquids@1#, and more recently, of concentrated collo
dal dispersions@2#. The simplicity of this idealized interac
tion potential has allowed the proposal of extremely sim
analytic expressions for some of its most relevant thermo
namic and structural equilibrium properties@1#. In other con-
texts, however, the very discontinuous nature of the HS
potential turns out to be the source of considerable diffic
ties. In colloid dynamics, for example, the first cumulants
the intermediate scattering functionF(k,t) may be readily
accessible by dynamic light scattering experiments, and
easily be calculated for continuous pair potentials@1–3#. For
the HS system, in contrast, these short-time properties do
exist, since in this caseF(k,t) is not an analytic function of
time. The short-time moments, and all the other relevant
namic properties of model colloidal dispersions in equil
rium ~and in the absence of hydrodynamic interactions!, may
also be simulated rather easily by the conventional Brown
dynamics~BD! algorithm of Ermak and McCammon@4,5# if
the interparticle effective interactions can be described
continuous pair potentials. Also, due to the discontinuo
nature of the HS interaction, however, this well-establish
algorithm, which relies on the calculation of particle-partic
forces to describe Brownian collisions, becomes undefi
for the HS system.

Several attempts to circumvent the latter difficulty ha
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been reported in the literature. Some are based on an a
cial definition of the collisions between Brownian ha
spheres@6,7#. Others artificially avoid hard-sphere overlap
@8–15#, which are inevitable in a straightforward applicatio
of the Brownian dynamics algorithm to a HS system invo
ing a finite time stepDt. By means of a careful extrapolatio
procedure to the limitDt→0, however, Cichocki and co
workers@8–11# were able to compute some of the dynam
properties of the equilibrium HS suspension in the abse
of hydrodynamic interactions. Heyes and Bran´ka @16,17#, on
the other hand, have approached the Brownian dynam
simulation of these systems by considering repulsive s
sphere potentials of the form (s/r )n ~whosen→` limit is
the HS potential! for a sufficiently large, but finite, exponen
n; the BD algorithm is well defined for these potentials wh
n remains finite. One interesting side result of the pres
work is a different approach to simulate the dynamics of
HS model suspension without hydrodynamic interactio
Such an algorithm is in some sense similar and complem
tary to that of Heyes and Bran´ka, although it is based on th
application of a principle of dynamic equivalence betwe
Brownian soft- and hard-sphere systems, whose discussi
the main subject of the present paper.

It is well known ~see Sec. 6.3 of Ref.@1# for a textbook
presentation! that the static structural properties of a repu
sive soft-sphere system can be mapped, upon the defin
of some effective diameter, onto the corresponding proper
of a hard-sphere system. This means that the radial distr
tion functiong(r ) of the soft-sphere system is approximate
identical to that of an appropriately chosen HS system,
cept for a small region nearr 5s ~or, without exception, if
we describe the static structure in terms of the funct
y(r )5exp@bus(r)#g(r); see Ref.@18# and Fig. 1!. Conversely,
the static structure of the HS system at a given volume fr
tion can be represented by the structure of any of the s
sphere systems in this family, up to some well-defined r
©2003 The American Physical Society05-1
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caling of the distance. This is equivalent to some form of
principle of equivalence or universality of the structur
properties of all the systems in this family, and we
established prescriptions exist to determine the corresp
dence between any soft-sphere and its corresponding h
sphere system@1#. For example, in approximating th
properties of the reference system~repulsive soft-core poten
tial! by those of the hard-sphere fluid, the well-know
Weeks-Chandler-Andersen@19# ~WCA! and Barker-
Henderson@20# ~BH! perturbation theories of liquids involv
the use of this principle. Furthermore, they provide sim
procedures to quantitatively establish such corresponde
~e.g., the ‘‘blip-function’’ method@1# in the WCA theory!.
Thus, it is natural to question whether this static universa
extends over to dynamic properties such asF(k,t). Answer-
ing this question is the main purpose of this work.

Surprisingly enough, to the best of our knowledge, t
expectation of dynamic equivalence has never been teste
detail. In this paper, we demonstrate that, at least in the c
text of the equilibrium dynamic properties of the family
model Brownian fluids considered here, this expectation
deed happens to be correct. As an interesting side prod
this dynamic equivalence is employed to propose a differ
BD algorithm for hard-sphere suspensions without hydro
namic interactions, which allows us to determine the d
namic properties of this system by means of a simple res
ing of the time and space variables of the simula
properties of any of the dynamically equivalent soft-sph
systems. As an illustration, we present some results for
Van Hove function and/or its Fourier transformF(k,T) of
the HS system, and compare them with the results of o
authors.

In the following section, we recall the physical princip
of static equivalence between soft- and hard-sphere syst
In Sec. III, we explain in detail the dynamic extension of th
equivalence principle. Section IV describes the result
Brownian dynamics algorithm for hard-sphere dispersion
the absence of hydrodynamic interactions. In Sec. V, we
lustrate its application and discuss its limitations. Summ
is contained in Sec. VI.

FIG. 1. Radial distribution function of three equivalent syste
of soft spheres. The solid curve corresponds to the system of
spheres with volume fraction of 0.4.
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II. STATIC EQUIVALENCE BETWEEN SOFT
AND HARD SPHERES

Consider a soft-sphere system consisting ofN particles in
a volumeV, interacting through some form of soft repulsiv
but short-ranged pair potentialus(r ). For our purpose, the
particular form of this potential is irrelevant. For concret
ness, however, we choose to write it, in units of the therm
energykBT5b21, as

bus~r !5S ss

r D 2n

22S ss

r D n

11, ~1!

for 0,r<ss , and such that it vanishes forr .ss . The only
convenience of this particular functional form is that the p
tential and its derivative strictly vanish at, and beyond,ss . It
is also the natural reference potential in the WCA pertur
tion theory for the 2n2n family of repulsive plus attractive
interactions, which includes the Lennard-Jones potentian
56). This, however, is not relevant in the present contex

Let us now imagine a hard-sphere system@i.e., the n
→` limit of Eq. ~1!# at exactly the same number concentr
tion n5N/V. It has been long documented@1# that one can
find a particular value for the hard-sphere diametersh of this
system, such that the structure of both systems would
virtually indistinguishable. In both, the WCA and the B
perturbation theories of liquids, prescriptions are given
determine the value ofsh , for a given soft-potential~i.e.,
givenn andss) and a given number densityn. For example,
the simplest of them is the so-called ‘‘blip-function’’ metho
which adjustssh such that the volume integral of the bli
function, †exp@2bus(r)#2exp@2buh(r)#‡, vanishes; other
more accurate prescriptions can be consulted in the litera
@1#.

Exactly this correspondence between soft- and ha
sphere systems can be used in an inverse manner. Thus,
given hard-sphere system~i.e., given number concentrationn
and HS diametersh), one can determine the ‘‘diameter’’ss
of any soft-sphere system of the family described by
interaction potential in Eq.~1!, whose structure, at the sam
concentrationn, matches that of the given HS system. Th
implies that all the soft-sphere systems in the family in E
~1! are structurally identical to each other, in the sense t
they share the same functiony(r ), and hence, the structur
of any member of this family can be used to represent
structure of any other, including, of course, the HS syst
itself.

What we mean for ‘‘structurally identical’’ is quantita
tively illustrated in Fig. 1. There, the radial distribution fun
tion ~rdf! g(r ) of three soft-sphere systems (n59, 12, and
18, simulated by the conventional Brownian dynamics alg
rithm @4,5#! are plotted, along with the rdf of the hard-sphe
system at a volume fractionfh[pnsh

3/650.4 ~simulated
with the conventional Monte Carlo algorithm@5#!. Note that
various rdfs differ nearr 5sh because of the facto
exp@2bus(r)# in g(r )5exp@2bus(r)#y(r). Hence, the struc-
tural equivalence is most dramatically exhibited by the u
versality of the functiony(r ), as illustrated in the inset o
Fig. 1. Also note that all the functionsg(r ) andy(r ) in Fig.

s
rd
5-2



re
rd
e
-

av

st
uc
s

w
ta
x-
b
ie
t

tu
so
io
nd
ai

r
o

ys
be
n
o

itio

ls
a

eter
-
of
nly
es,

by
f

ena
ns

-

ed
os-
res

con-
e
e-

rop-
that

m
lf
,

of

be-

d in
ove
t a

re-
dy-

this
ion
for
t

ic
ell-
c-
s,

o
he
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1 are plotted as functions of the radial distance measu
with a common length scale, for which we chose the ha
sphere diametersh . In the figure, we also indicate the valu
of the soft-sphere diameterss , and the corresponding vol
ume fractionfs[pnss

3/6, for each soft-sphere system~i.e.,
each value ofn). Since all the systems are supposed to h
the same number concentrationn, it is not difficult to see
that, for a givenn, the volume fractionsfh and fs are re-
lated byfh /fs5(sh /ss)

3. In determining the value ofss
that matches the structure of the HS system, one may
with one of the simple prescriptions referred to above, s
as the blip function method, but at high concentration
more accurate prescription may be necessary~see Sec. IV
below!.

Clearly, this ‘‘structural identity’’ refers to the position
and height of the successive maxima and minima ofg(r ),
and not to the details of its main peak at contact.However,
many other properties, including the dynamic properties
are interested in, happen to be quite insensitive to the de
of the differences in the rdfs illustrated in Fig. 1. For e
ample, the same differences are virtually indistinguisha
when the information in Fig. 1 is presented in the Four
space, as is illustrated in Fig. 2, where we plot the sta
structure factorS(k)511nh(k), whereh(k) is the Fourier
transform of the total correlation functionh(r )5g(r )21.
This figure clearly indicates that, as far as the static struc
factor is concerned, there is little difference, within the re
lution of the figure, between the hard-sphere and the var
soft-sphere systems. A situation similar to this will be fou
to apply for the dynamic properties of interest, as we expl
in the following section.

To avoid confusion, we should stress that the structu
equivalence illustrated in Fig. 1 refers to the comparison
the radial distribution functions of several soft-sphere s
tems which only have in common the value of the num
concentrationn, but not the value of the volume fractio
fs5pnss

3/6. This is because the soft-sphere diameter
each system was adjusted precisely to satisfy the cond
for equivalence@see Eq.~5! below#, which leads to the co-
incidence illustrated in the figure. In contrast, one could a
compare the rdfs of several soft-sphere systems at the s

FIG. 2. Structure factor of three equivalent systems of s
spheres. The solid curve corresponds to the system of hard sp
with volume fraction of 0.4.
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number concentration and the same soft-sphere diam
~and, hence, the same volume fraction!. These systems, how
ever, will not be structurally equivalent, except in the limit
infinitely steep potentials. Comparisons of this sort, not o
for structural but also for dynamic and transport properti
have been performed by several authors, most notably
Heyes and co-workers@21–23# ~see, for example, Fig. 1 o
Ref. @21#!.

III. DYNAMIC EQUIVALENCE BETWEEN SOFT- AND
HARD-SPHERE SYSTEMS

One of the most directly measurable dynamic phenom
of a colloidal dispersion is the relaxation of the fluctuatio
dn(r ,t) of the local concentrationn(r ,t) of colloidal par-
ticles around its bulk equilibrium valuen. The average decay
of dn(r ,t) is described@1,2# by the time-dependent correla
tion function^dn(r ,t)dn(r 8,0)&, referred to as the Van Hove
function G(ur2r 8u,t). These properties can be determin
directly by means of techniques such as digital video micr
copy. Dynamic light scattering, on the other hand, measu
directly the Fourier transformF(k,t) of G(r ,t), referred to
as the intermediate scattering function. These properties
tain, in principle, all the relevant dynamic information of th
equilibrium suspension. The initial values of these tim
dependent correlation functions are precisely the static p
erties discussed in the preceding section. Thus, we have
G(r ,t50)5d(r )1g(r ), whereas F(k,t50)5S(k). The
microscopic definition ofG(r ,t) is the following:

G~ ur2r 8u,t !5
1

N K (
i , j 51

N

d„r2r i~ t !…d„r 82r j~0!…L . ~2!

In this equation, the angular brackets indicate equilibriu
ensemble average. Thus,G(r ,t) can be separated into its se
and distinct partsGs(r ,t) andGd(r ,t), defined, respectively
as the sum of the diagonal and of the off-diagonal terms
Eq. ~2!. Clearly, the initial value ofGs(r ,t) is d(r ), and that
of Gd(r ,t) is g(r ).

We can now state the expected dynamic equivalence
tween soft- and hard-sphere systems in terms ofG(r ,t). This
is basically as simple as the static equivalence explaine
the preceding section. Thus, we expect that the Van H
function of all the systems in Fig. 1, when evaluated a
given nonzero value of the correlation timet, will coincide
among themselves, just as they coincide att50 in Fig. 1.

This expectation, however, involves an additional requi
ment of dynamic character, namely, that the microscopic
namic laws that govern the motion of the set ofN particles
are the same for all the systems we are comparing. By
we mean, in the context of colloid dynamics, that the mot
of the N particles of any of these systems is governed,
example, by theN-particle Smoluchowski equations withou
hydrodynamic interactions~or the equivalent many-particle
configurational Langevin equations@2,3#!. The practical
implementation of the solution of this many-particle dynam
description in a computer simulation corresponds to the w
known Brownian dynamics algorithm of Ermak and M
Cammon@4#. In the absence of hydrodynamic interaction

ft
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the only microscopic parameter of dynamic significance
this algorithm is the diffusion coefficientD0, which governs
the free diffusion of each particle, i.e., its motion betwe
collisions. Thus, the Van Hove Function, and all the oth
macroscopic dynamic properties that derive from it, can o
depend onD0, pair potential and concentration. As in Fig.
we are considering the various soft-sphere systems to b
the same number concentration, and we now also ass
that each particle diffuses between collisions with the sa
diffusion coefficientD0. Thus, our expectation is that, und
these assumptions, the details of the interparticle collisio
which are governed by the specific pair potential, will
essentially irrelevant.

In Fig. 3, we plot the Brownian dynamics results for t
Van Hove function of the same soft-sphere systems as in
1, as a function of the radial distance, also expressed in u
of sh , and for three values of the correlation timet, ex-
pressed in terms of a common time unit, for which w
chooseth[sh

2/D0. This figure demonstrates the dynam
equivalence between the three soft-sphere systems simu
with the BD algorithm. Clearly, the quantitative coinciden
is much more striking, compared with that observed at
50 in Fig. 1. The reason for this is that the Brownian moti

FIG. 3. Van Hove function of three equivalent systems of s
spheres evaluated at three times, namely,D0t/sh

250.009~a!, 0.044
~b!, and 0.088~c!. These three systems are equivalent to the sys
of hard spheres with volume fraction of 0.4.
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of the particles almost immediately blurs the details of t
initial structure represented byg(r ), whose first maximum
exhibits rather dramatically the detailed differences origin
ing from the difference in the softness of the three syste
considered. The curve, in which the three simulation res
in Fig. 1 collapse, then represents a universal curve for
the systems in the family in Eq.~1!, including the hard-
sphere limitn→` ~see, however, the limitations discussed
Sec. V!. Figure 3 is aimed at illustrating the dynamic exte
sion of the structural equivalence among soft, but sho
ranged repulsive potentials of the type in Eq.~1!. Exactly the
same scenario illustrated in Fig. 3 forfh50.4 was observed
for other representative values offs in the fluid regime 0
<fs<0.5. Furthermore, as we said in the beginning of t
section, this equivalence is not restricted to the syste
whose pair potential is given by the particular function
form in Eq. ~1!. Although we do not report in detail, simila
comparisons as in Figs. 1–3 were made for other functio
forms, leading to the same scenario.

We must admit that the dynamic equivalence explained
this section is a rather obvious and naturally expected c
cept. In fact, the reported experimental measurement of
properties of real hard-sphere dispersions@24–26# is neces-
sarily based on the validity of this equivalence, since r
dispersions are never strictly hard spheres. In reality,
measurements are made on soft-sphere dispersions, and
only on the basis of the equivalence illustrated here in de
that such measurements can be reported as the properti
hard-sphere systems~see, for example, Refs.@24–26#, and
references therein!. Thus, the value of the results in this se
tion is that they document in detail the degree to which t
expectation is correct. Equally important, however, is the f
that this equivalence provides us with a relatively simp
method to simulate the properties of an important refere
system, namely, the hard-sphere dispersion in the absen
hydrodynamic interactions.

IV. BROWNIAN DYNAMICS ALGORITHM
FOR HARD SPHERES

The comparison in Fig. 3 illustrates the notion that it
possible to map the dynamic properties of the hard-sph
Brownian fluid~HSBF! onto the corresponding properties
a soft-sphere system. This correspondence can be state
follows. Imagine we wish to calculate the Van Hove functio
GH(r ,t;n,sh ,D0) of the HSBF for a given state, i.e., for
given volume fraction. Imagine, on the other hand, that o
can determine the Van Hove functionGS(r ,t;n,ss ,D0) of a
soft-sphere Brownian fluid of arbitrary diameterss , diffu-
sion constantD0, and concentrationn. The equivalence prin-
ciple that we aim at describing, and that was illustrated
advance in Fig. 3, can then be stated by saying that i
possible to find a value of the soft-sphere diameterss , such
that the Van Hove function of both systems are indistingui
able ~up to the degree explained in the static case!, i.e.,

GH~r ,t;n,sh ,D0!5GS~r ,t;n,ss ,D0!, ~3!

provided that both systems have the same number conce
tion n, the same free-diffusion coefficientD0, and that their

t
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DYNAMIC EQUIVALENCE BETWEEN SOFT- AND HARD- . . . PHYSICAL REVIEW E 68, 011405 ~2003!
diameterssh and ss satisfy the condition that the two sys
tems are structurally identical, in the sense explained in
preceding section.

This general dynamic equivalence condition can also
written in terms of the ‘‘natural’’ dimensionless variables
each system, as the following rescaling prescription. The
Hove function of the HSBF can be written in terms of
natural dimensionless arguments asGH(r ,t;n,sh ,D0)
5GH* (r /sh ,sh

2t/D0;nsh
3)[GH* (r * ,t* ;n* ). Similarly,

the Van Hove functionG(r ,t) of the soft-sphere system de
pends on the parametersn, ss , and D0 as
GS(r ,t;n,sh ,D0)5GS* (r /ss ,ss

2t/D0;nss
3). Thus, the dy-

namic equivalence condition in Eq.~3! can also be written as

GH* ~r * ,t* ;n* !5GS* ~l21r * ,l2t* ;l3n* !, ~4!

where l[ss /sh is determined by the condition of stat
structural equivalence, i.e., as the solution of Eq.~4! with
t* 50. Since at this initial time the Van Hove function is ju
the radial distribution functiong(r ) ~for rÞ0), such a con-
dition of static structural equivalence reads

gH* ~r * ;n* !5gS* ~l21r * ;l3n* !, ~5!

where the respective rdfs are expressed in terms of the
responding dimensionless arguments. Equation~5! is the ba-
sic assumption on which the specific and approximate p
scriptions involved in the WCA and BH perturbation theori
are based@1#. For example, integrating this equation
equivalent to the request that the static structure facto
zero wave vector~i.e., the isothermal compressibility! of
both systems be the same. The resulting equation is a cl
equation forl, from which even simpler approximate con
ditions can be derived; the so-called blip-function equation
about the simplest and most elegant~but not sufficiently ac-
curate! of them.

TABLE I. Parameters of the soft-sphere systems calculated w
the equivalence approach described in Sec. II. The parametern is
the exponent in the potential,ss is the diameter, andfs is the
volume fraction of soft-sphere system. The last column correspo
to the volume fractionfh of the equivalent hard-sphere system.

n ss /sh fs fh

18 1.0344 0.5534 0.5000
12 1.0523 0.5827 0.5000
9 1.0705 0.6133 0.5000

18 1.0344 0.5146 0.4650

18 1.0338 0.4420 0.4000
12 1.0530 0.4670 0.4000
9 1.0765 0.4990 0.4000

18 1.0378 0.3800 0.3400

18 1.0370 0.2230 0.2000
01140
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Thus, the first step in the algorithm to simulate the d
namic properties of the HSBF for a given volume fracti
fh5pnsh

3/6 starts with the determination ofl from some
criterion equivalent to Eq.~5!. In practice, we first estimatel
~for a givenn) by means of the blip-function method, bu
then fine tune the determination ofl by performing various
simulation runs for the radial distribution function of th
soft-sphere system, varying the volume fractionfs5l3fh ,
until the integrated form of Eq.~5! is satisfied. Table I con-
tains the values ofl for the soft-sphere potentials and co
centrations considered in this paper. In addition, in Table
we also include two volume fractions corresponding to
ported experimental conditions@24,25#. From this table, one
can see that, to a first approximation, this quantity is fai
independent of volume fraction, and not very different fro
the value given by the blip-function method.

Oncel has been determined, the next step is to perform
conventional Brownian dynamics simulation of the so
sphere system for the resulting volume fractionfs , follow-
ing the well-established Ermack-McCammon BD algorith
The desired data for the HSBF are then given by the sim
lated properties of the soft-sphere system according to
rescaling prescription in Eq.~4!. In Table II, we summarize
the technical data of some of the runs whose results are
ported in this paper. In particular, the data presented in Fi
to illustrate the dynamic equivalence condition were o
tained by following the procedure above.

V. ILLUSTRATIVE APPLICATION

In what follows, we present a selection of representat
results for the dynamics of the HS system simulated with
algorithm above. The idea is only to give some details of
methodological procedure, rather than reporting or analyz
the many new data that can be generated as a result o
application, which will be the subject of a separate rep
@27#. The Van Hove functionG(r ,t) is the most fundamenta
dynamic property of a fluid in the equilibrium state, an
other properties~such as the self-diffusion and the rheolog
cal properties! derive from it. Clearly, properties that can b
written only in terms ofG(r ,t) will inherit the scaling fea-

th

ds

TABLE II. Parameters of the different Brownian dynamic sim
lations of the soft-sphere systems. The last three columns co
spond to the value of the time stepDt, the number of particlesN
56f(L/ss)

3/p, with L'7ss , and the total numberNc of gener-
ated configurations, respectively.

n fs D0Dt/ss
2(31025) N Nc(3103)

18 0.5534 1.64 363 510
12 0.5827 1.64 382 510
9 0.6133 1.73 402 600

18 0.4420 1.63 290 510
12 0.4670 1.64 306 510
9 0.4990 1.53 327 510

18 0.2230 1.48 147 1650
5-5
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tures implied by the dynamic universality~or equivalence!
principle discussed in this work and illustrated in Fig. 3 f
G(r ,t) itself. This figure illustrates the general level of qua
titative accuracy of these scaling features inG(r ,t) at the
relevant space- and time-regimes. One can intention
search, however, for properties that exhibit more dram
cally the deviations from this scaling behavior. One of the
is, of course,Gd(r ,t) nearr 5sh at very early times, since
Gd(r ,t50)5g(r ), which strongly depends onn near r
5sh ~see Figs. 1 and 5 below!.

Another sensitive property is the mean squared displa
ment of individual particles. For example, in Fig. 4, w
present results for the dimensionless time-dependent
diffusion coefficientD(t)/D0 of the soft-sphere systems wit
n59,12,18,24 at the HS volume fractions of 0.2, 0.4, a
0.5. This property is defined@2,3# as the mean squared di
placement of a tracer particle divided by its free-diffusi
limit 6D0t, so thatD(t)/D0[^@Dr (t)#2&/6D0t. Clearly, the
curves corresponding to the soft-sphere systems withn
59, 12, and 18 collapse into a single curve. This curve w
then be the same for the other soft-sphere systems in
family ~i.e., for all other values ofn), and hence, it will also
represent the properties of the hard-sphere system. With
confidence, in Fig. 4, we only plot the specific results o
tained with the systemn518 for the lowest volume fraction
(fh50.2).

The range of validity of the above method depends, ho
ever, on various factors. For example, the soft-sphere
tems included in the equivalence family cannot, of course
arbitrarily soft, i.e.,n cannot be close to, for example, 1
2. Typical values ofn for which our scheme applies wit
confidence are those reported in our illustrative examp
(n59,12,18). We found, however, that at volume fractio
of the order of, and beyond, the freezing volume fractionf f ,
the softer of these systems, in spite of being structur
equivalent, may fall outside the range of dynamical equi
lence. This is also illustrated in Fig. 4, by the average
D(t) corresponding to various soft-sphere systemsn
59, 12, 18, and 24) which are structurally identical to t

FIG. 4. Time-dependent self-diffusion coefficient of differe
soft-sphere systems equivalent to the hard-sphere system with
ume fraction 0.2~top!, 0.4 ~center!, and 0.5~bottom!. The dashed
curve corresponds to the parametrized fit of the hard-sphere Bro
ian dynamics reported in Ref.@8#.
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HS system at the volume fraction of 0.5. Clearly, now the
is a slight but appreciable dependence onn of the results for
D(t)/D0 for the softer potentials (n59 and 12), and one ha
to go beyondn518 in order to see the convergence into
single curve, corresponding to the hard-sphere system.
is illustrated with the data forn524, which already fall in-
side the universal curve for this volume fraction, and hen
represent a very accurate determination of the tim
dependent properties of the HS system.

Thus, our procedure has its own self-consistency criter
to estimate the accuracy to which we are determining
dynamic properties of the HS system, namely, the collaps
the results of all soft-sphere systems~beyond some threshold
value of n, which may depend on volume fraction! into a
single curve. Nevertheless, it is reassuring to check that
results coincide with those determined by means of differ
and independent approaches. In this respect, we found
our data agree with those of Cichocki and Hinsen, rep
sented in Fig. 4 by the dashed curves, which derive from
parametrized formula that these authors used to fit th
simulation data in Ref.@8#.

Another regime where our equivalence principle must
quire careful application refers to short times. All we ha
said so far is based on the results plotted in our illustrat
figures. They correspond to a time window with a time sc
t0[sh

2/D0, which is the time needed by a given particle
diffuse its own HS diameter. This, however, may be a rat
long time compared with the mean time this particle takes
diffuse freely, before colliding with other spheres. A simp
estimate of this mean free timet f is given by the time one
particle takes to diffuse the surface-to-surface mean dista
(d2sh), whered5n21/3 is the interparticle mean distance
i.e., t f[(d2sh)2/D0. Thus, the ratiot f /t05(d/sh21)2

depends on concentration. For a packing fraction of 0.4,
ratio is of the order of 1022. This means, for example, tha
the results illustrated in Fig. 3, which correspond to tim
t/t0>0.87531022, illustrate only the collision-dominated
regime. In order to observe the free-diffusion regimet
&t f , we would have to increase the time resolution by
least one order of magnitude. If this is done, one would
serve how the initial structure, determined by the radial d
tribution functiong(r ), is dissipated only by the free diffu
sion of the particles that constitute the cage around
central particle. Since, as we see in Fig. 1, the differen
between the various soft-sphere systems are most appare
the first maximum ofg(r ), one can expect that in this ver
early time regime such differences should still be apparen
the distinct partGd(r ,t) of the Van Hove function. To pro-
vide a more quantitative illustration of this, Fig. 5 describ
the evolution of the first maximum ofGd(r ,t) for three times
pertaining to this short-time regime. Let us mention, ho
ever, that these differences between different systems
become an issue when we observe them inGd(r ,t) or in the
full Van Hove function in this early time regime. However,
the same information were presented in the Fourier space
would hardly be able to appreciate them, since these dif
ences are negligible already for the static structure factor
illustrated in Fig. 2.

Concerning the results for the time-dependent diffus

ol-

n-
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coefficient in Fig. 4, the free-diffusion regime corresponds
the very initial decay ofD(t)/D0 from its value of 1 att
50. In this figure, this decay is hidden in the almost verti
decay ofD(t)/D0. If we again look at this time regime with
much higher resolution, we would again notice differenc
~particularly in the initial slope of this quantity! for different
soft-sphere systems. In fact, it is not difficult to show that
value of this initial slope is proportional ton21, and hence, it
diverges for the hard-sphere system. However, as soon a
collisions dominate the structural relaxation, i.e., for tim
larger thant f , these initial differences become irrelevant,
demonstrated here.

From the experimental point of view, the relaxation of t
fluctuations in the Fourier space constitutes a more rele
subject. Only as an illustration, in Fig. 6, we present
decay of the intermediate scattering functionF(k,t) for the
hard-sphere system at a packing fraction of 0.50 and at
wave vectorkmin corresponding to the position of the min
mum of the static structure factor. This figure compleme
Fig. 4 in the comparison of our simulation results with tho

FIG. 5. Distinct part of the Van Hove function of two equivale
systems of soft-spheres evaluated at three different times in
short-time regime. Both systems are equivalent to the hard-sp
system at volume fraction 0.4.

FIG. 6. Intermediate scattering function of the system of s
spheres with volume fraction of 0.5534 and exponentn518,
equivalent to the hard-sphere system at volume fraction 0.50.
wave vectorksh59.78 corresponds to the position of the first min
mum of the static structure factorS(k).
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of the alternative method of Cichocki and Hinsen. He
again, we find total agreement between the results of the
methods.

VI. SUMMARY

In this paper, we have demonstrated that the principle
static structural equivalence among systems with purely
pulsive interactions carries over to the dynamic domain. T
results presented here indicate the degree to which this p
ciple applies in the realm of the collective dynamic prop
ties, such as the Van Hove function, of model Brownian fl
ids. We demonstrated that this principle applies to suc
degree of quantitative accuracy, that it lends itself to a pr
tical application, namely, the devise of a simple algorithm
carry out Brownian dynamics simulations of the propert
of an important reference system, namely, the hard-sph
Brownian fluid in the absence of hydrodynamic interactio
Here, we also provided detailed explanation of a numbe
methodological issues of the application of this simulati
algorithm. This algorithm has its own internal criterion
reliability, namely, the collapse of the results for a giv
dynamic property for different soft-sphere systems in
single master curve. However, it was interesting to estab
that the results of our algorithm agree with the availa
results of the method of Cichocki and Hinsen@8–11#.

Although in practice this may not be quantitatively ve
relevant, here we also discussed the range of validity of
proposal. Thus, the principle of dynamic correspondence
the same limitations as its static version, namely, the str
tural equivalence does not refer to the region near cont
where the details of the specific interaction potential mat
In the dynamic version, however, these details only rem
appreciable at very early times, and are quickly and co
pletely blurred out as soon as the interparticle collisions
come important. A more important and fundamental poten
limitation refers to the application of these ideas to noneq
librium conditions @15#. Our interest in developing this
method of simulating the dynamics of the equilibrium HSB
however, derives from the need of understanding import
issues involving this relevant reference system. For exam
given a number of interesting observations on the dyna
properties of experimental HS colloidal systems@24–26#, it
would be interesting to see which of these observations a
consequence only of the direct interactions, and which
them derive fundamentally from the presence of hydro
namic interactions in a real suspensions. The complexity
the theoretical treatment of the combined effects of hydro
namic and direct interactions in highly concentrated disp
sions call for simplifying approaches to the description
these phenomena, such as the hydrodynamic rescaling
cept put forward in 1988 by one of the authors@28#. In these
efforts, and in the devise and calibration of approximate t
oretical schemes@29#, one might benefit from the availability
of a variety of manners to simulate the properties that th
theories predict. As it happens, the simulation algorithm p

he
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sented in this paper turns out to be an effective tool for
purposes just mentioned, as reported separately@27#.
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